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Note: Each contestant is credited with the largest sum of points obtained for three
problems.

1. An illusionist lays a full deck of 52 cards in a row and tells spectators that 51
cards will be taken away step by step with only the Three of Clubs remaining
on the table. On each step some spectator tells the illusionist a number so that
a card lying on the place with this number in the row is taken away. However,
the illusionist makes his own decision from which side of the row, left or right, he
should count that number from to take the card away. For which initial positions
of the Three of Clubs can the illusionist guarantee the success of his trick for
sure? (3 points)

2. Let ABCDE be a convex pentagon such that AE is parallel to CD and AB = BC.
Let the angle bisectors of angles A and C intersect at point K. Prove that BK is
parallel to AE. (4 points)

3. An integer x written on a blackboard can be replaced either with 3x + 1 or with
⌊x/2⌋ (the greatest integer not exceeding x/2). Prove that if 1 is initially written,
then any positive integer can be obtained by using the operations above.(4 points)

4. In a polygon, any two adjacent sides are perpendicular. Two vertices of the poly-
gon are called unfriendly, if the angle bisectors emanating from those vertices are
perpendicular. Prove that for each vertex the number of vertices unfriendly with
that vertex is even. (5 points)

5. There is a row of 100 squares each containing a counter. Any 2 neighbouring
counters can be swapped for 1 dollar and any 2 counters that have exactly 4
counters between them can be swapped for free. What is the least amount of
money that must be spent to rearrange the counters in reverse order? (5 points)
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1. The illusionist can guarantee the success of his trick when the Three of Clubs is
placed at either end of the row of 52 cards. Indeed, the illusionist can be forced to
take away the Three of Clubs only if it is a central (symmetrical with respect to
both ends of the row) card at some step. Otherwise he always has the opportunity
to remove another card. If the Three of Clubs is placed at either end of the row
of 52 cards, it can only become a central card on the very last turn, allowing the
illusionist to guarantee the success of his trick.

We claim that for any other position the spectators can prevent the success of the
trick. Suppose that the Three of Clubs is placed at an interior position of the row
of 52 cards, i.e. not at either end. Here are two possible strategies for spectators.

Strategy 1. The spectators keep nominating numbers that match interior posi-
tions. This guarantees that the illusionist cannot remove a card from either end.
When there only 3 cards remaining in the row, the Three of Clubs is necessarily
the middle card. The spectators should then nominate number 2 and force the
illusionist to remove the Three of Clubs.

Strategy 2. The spectators always nominate the number of the position of the
Three of Clubs. Then the illusionist is forced to remove the card in the mirror
symmetric position, decreasing the larger of the distances of the Three of Clubs
from the ends of the row. Thus, eventually the Three of Clubs is the same distance
from both ends, which is to say it is the middle card, so that the illusionist is forced
to remove it while it is still an interior card.

2. We construct a point X, and show that it coincides with K. Construct line `
through B parallel to AE. Let X be the point of intersection of ` with the bisector
of ∠C. Then ` = BX is also parallel to CD, and hence

∠BXC = ∠XCD, (alternating angles)

= ∠BCX.

Thus, triangle XBC is isosceles, with

XB = BC

= BA.

Hence triangle XBA is isosceles, with

∠BAX = ∠BXA

= ∠XAE, (alternating angles, since ` = BX ‖ AE).

So, AX is the bisector of ∠A, and hence X coincides with K, the intersection of the



bisectors of ∠A and ∠C. Thus, BK is parallel to AE and the proof is complete.
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3. Let f, g be the given operations, i.e. x
f7−→ 3x + 1 and x

g7−→ bx/2c. Let P (n) be
the statement: ‘n can be written on the board’. We shall prove P (n) holds for all
natural numbers n by strong induction.

The base case P (1) is given, since 1 is the initial number written on the board.

Any n > 1 has form 3k− 1, 3k or 3k+ 1 for k ≥ 1. For the inductive step, we shall
deduce P (n) holds, assuming P (m) holds for 1 ≤ m < n. Thus, in particular, by
assumption P (k), P (2k − 1) and P (2k) hold, and hence the following three map
sequences:

Case “n = 3k − 1”: 2k − 1
f7−→ 6k − 2

g7−→ 3k − 1,

Case “n = 3k”: 2k
f7−→ 6k + 1

g7−→ 3k,

Case “n = 3k + 1”: k
f7−→ 3k + 1,

show that P (n) holds for all three forms of n, if P (m) holds for 1 ≤ m < n.

So, the induction is complete, and hence P (n) holds for all natural numbers n, i.e.
any natural number n can be written on the board via some sequence of f and g
operations.

4. Solution 1. Rotate the polygon to make the sides horizontal and vertical. Let the
number of the horizontal sides be k. Then, since each vertex is incident with one
horizontal and one vertical edge, so that numbers of horizontal sides and vertical
sides must be equal, the number of the vertical sides is also k. Note that all the
vertices are of four possible types: p, q, x, y, which in order we will call, types 1 to
4.

Since by rotating the polygon, we can alter the type of a vertex as we please, we
can suppose without loss of generality that an arbitrarily chosen vertex A is type
2. Observe that the angle bisectors of vertices of types 2 and 3 are parallel, and the
angle bisectors of vertices of types 1 and 4 are perpendicular to the angle bisectors
of vertices of type 2. Thus the vertices that are unfriendly with A are the vertices
of types 1 and 4.

We claim that the total number of vertices of types 1 and 4 is even. Indeed, each
vertex of type 1 or 3 is the left end of a horizontal side. Hence, the total number
of vertices of types 1 and 3 is k. Let the number of type 1 vertices be n, then the
number of type 3 vertices is k − n. Since each vertex of type 3 or 4 is the lower



end of a vertical side, the total number of vertices of types 3 and 4 is k. Thus, the
number of vertices of type 4 is k − (k − n) = n. Thus the total number of vertices
of types 1 and 4, and hence the number of vertices that are unfriendly with A, is
2n, which is even, as was required to be shown.

Solution 2. Rotate the polygon so that at the chosen vertex A the angle bisector
` is horizontal. Consider a point moving along the perimeter of the polygon with
a constant speed starting and finishing at A. Then, its projection onto ` is also
moving with a constant speed and the direction of its motion changes every time
it passes through a vertex whose angle bisector is parallel to ` or through vertex
A itself. Thus, the number of vertices whose angle bisector is parallel to ` is even.
Since the total number of all vertices is even, the number of unfriendly vertices is
also even.

Solution 3. Rotate the polygon to make the sides horizontal and vertical. Let
the number of horizontal sides be k, then, as in Solution 1, the number of vertical
sides is also k. Note that the slope of each angle bisector is either 1 or −1.

Label the vertices anticlockwise from some initial vertex with integers from 1 to
2k and let ai be 1 (resp. −1) if the angle moved through at the i-th vertex is 90◦

(resp. 270◦). As we move along the perimeter of the polygon anticlockwise, each
time we pass through a vertex with ai = 1 we rotate by 90◦ anticlockwise and each
time we pass through a vertex with ai = −1 we rotate by 90◦ clockwise. Since we
rotate by 360◦ after one circuit of the path we find that the number m of angles of
the second type is fewer by 4 than the number of angles of the first type. Hence,

m+m+ 4 = 2k

m+ 2 = k

m = k − 2,

and so, a1a2 · · · a2k = (−1)k−2.

Observe that the slopes of the angle bisectors of two consecutive vertices are the
same if and only if the angles are different. Denote the slope of the angle bisector
of the i-th vertex by bi. Without loss of generality we can assume that a1 = b1.
We see that for odd i we have ai = bi and for even i we have ai = −bi. Thus,

b1b2 · · · b2k = (−1)ka1a2 · · · a2k = (−1)2k−2 = 1.

Hence the number of angle bisectors with slope −1 is even and, thus, the number
of angle bisectors with slope 1, is also even. Therefore, whether a chosen vertex
has an angle bisector of slope 1 or −1, the number of unfriendly vertices is even.

5. This is a “discrete optimisation” problem. We will first show that the amount of
money that must be spent to rearrange the counters in reverse order is bounded
below by some value B, and then we show, by explicit example, that B can be
attained, where B = $61. Thus we will have shown that the least amount of money
that must be spent to rearrange the counters in reverse order is $61.

Number the squares left to right, sequentially from 1 to 100. Counters that have
exactly 4 counters between them have positions k and k+ 5, respectively, for some
integer k, i.e. counters whose positions are in the same residue class modulo 5,



can be swapped for free. Now, colour the squares with 5 colours 0, 1, 2, 3 and 4,
according to the residue class of their positions modulo 5, to achieve the pattern,

12340 12340 . . . 12340.

To reverse the order of the counters, a counter on square k must move to square
101 − k, or modulo 5, counters on squares coloured 0, 1, 2, 3, 4 must move to
squares coloured 1, 4, 2, 3, 0, respectively.

Since we can rearrange counters that stay on squares of the same colour in any
order for free, we can consider non-free swaps as those that swap a pair of counters
between squares of adjacent colours. Therefore, we can reformulate the problem
in the following way:

There are five piles of counters numbered 0, 1, 2, 3, 4, placed in order
around a circle. One may swap two counters between two adjacent piles
for 1 dollar. We need to determine the minimum cost for swapping all
the counters between the piles 0 and 1 and between the piles 2 and 4,
and leaving pile 3 intact.

If every counter from pile 0 goes to pile 1, then each is involved in at least 1
non-free swap. Similarly, each counter in pile 1 is involved in at least 1 non-free
swap. In moving a counter from pile 2 to pile 4, each counter is involved in at least
2 non-free swaps. Likewise, counters in pile 4 are involved in at least 2 non-free
swaps. Since each non-free swap involves two counters, we have a lower bound on
non-free swaps of (20 + 20 + 40 + 40)/2 = 60.

However, in order to achieve the objective with exactly 60 non-free swaps, each
counter in pile 2 must pass through pile 3, so that at least one counter originally
in pile 3 is involved in a swap. Hence the number of non-free swaps required is
greater than 60.

So we have a lower bound B of $61 for the cost of rearranging the counters in
reverse order. Now we show B can be attained. Indeed, partner each counter in
pile 0 with a counter in pile 1, and swap each pair; piles 0 and 1 have been swapped
for a cost of $20. Next, number the pile 2 counters: a1, a2, . . . , a20, and number the
pile 3 counters: b1, b2, . . . , b20. And select one counter X in pile 3. We proceed by
swapping a1 and X, so that X is in pile 2 and a1 in pile 3. Then swap a1 with b1,
so that a1 is in pile 4 and b1 in pile 3. We continue by swapping a2 with b1, a2 with
b2, and so on, until on the penultimate move we swap a20 with b20. Finally, we
swap b20 with X. Thus, piles 2 and 4 have been swapped, and counter X is back
in pile 3, for a cost of $41, and an overall cost of $61. The proof is now complete.


